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Abstract. The exclusive charge exchange reaction pD → n(pp) at intermediate and high energies is stud-
ied within the Bethe-Salpeter formalism. The final-state interaction in the detected pp pair at nearly
zero excitation energy is described by the 1S0 component of the Bethe-Salpeter amplitude. Results of
numerical calculations of polarization observables and differential cross-section persuade that, as in the
non-relativistic case, this reaction i) can be utilized as a “relativistic deuteron polarimeter” and ii) delivers
further information about the elementary nucleon-nucleon charge exchange amplitude.

PACS. 13.75.-n Hadron-induced low- and intermediate-energy reactions and scattering (energy less than
or equal to 10 GeV) – 21.45.+v Few-body systems – 25.10.+s Nuclear reactions involving few-nucleon
systems

1 Introduction

The investigation of polarization observables in electro-
magnetic and hadronic processes at high energies provides
refinement of the information about strong interaction at
short distances and the relevant reaction mechanisms. Ac-
cordingly, the experimental study of processes with polar-
ized particles becomes more and more important. Exper-
iments with deuteron targets or beams [1–4] are partic-
ularly interesting, since the deuteron serves as a unique
source of information on neutron properties at high trans-
ferred momenta; the knowledge of which allows, e.g. to
check a number of QCD predictions and sum rules. For
example, for an investigation of the NN interaction in
the deuteron at short distances, the three deuteron form
factors (magnetic, electric and quadrupole) have to be de-
termined. In the elastic eD scattering with unpolarized
particles one can measure only two independent quanti-
ties, e.g. the magnetic form factor and the deuteron func-
tion A(Q2), the latter being a kinematical combination of
all three form factors. Even these two quantities reveal an
important information about the quark physics and dy-
namics at short distances as demonstrated, for instance,
in recent measurements [1] at TJNAF. However, for a
full determination of the deuteron form factors separately,
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one needs measurements with polarized particles. For in-
stance, measurements of the tensor analyzing power T20 of
recoil deuterons in elastic eD scattering allow for a deter-
mination of the charge form factor Gc at high transferred
momenta. Namely the charge form factor is very sensitive
to details of the NN interaction [2,3,5] and, besides in-
formation about short-range correlations in the deuteron,
the investigation of Gc may essentially constrain the theo-
retical models applied in this area. However, in spite of the
fact that the electromagnetic processes are considered as
the cleanest ones, in such reactions one probes mainly the
quark structure of the target, leaving almost untouched
the physics connected with gluon degrees of freedom. In
this context, hadron deuteron processes can be consid-
ered as complementary tool in investigating phenomena at
short distances and also as a source of unique information
unavailable in electromagnetic reactions, such as nucleon
resonances, checking non-relativistic effective models, NN
potentials etc.

Experimental and theoretical investigations of the
proton-deuteron processes at intermediate and high en-
ergies have started some decades ago by studying elastic
pD scattering [6], exclusive and inclusive break-up reac-
tions [7,8] with the goal of determining the the details of
the deuteron wave function at short distances and the rele-
vant reaction mechanisms. Note, that in elastic backward
pD processes it is possible to determine completely the
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reaction amplitude by measuring a full set of polarization
observables (see, e.g., [9–11]). Hence, as in the electro-
magnetic processes one needs to measure different polar-
izations of the recoil deuteron.

Since such polarization observables can be studied only
by an additional secondary scattering of the reaction prod-
ucts, e.g., inside a polarimeter, it is obvious that the sec-
ond process must possess a high enough cross-section to
assure a good efficiency of the polarimeter. Traditionally,
at low energies one uses the process 3He (D, p) 4He [12],
while for relativistic energies the elastic Dp scattering
serves as polarimeter [13]. Bugg and Wilkin [14] proposed
to use as an efficient deuteron polarimeter the process
p 
D → n(pp), where the final pp pair is detected with very
low excitation energy (see also ref. [15]). It has been ar-
gued that at low excitation energies and low transferred
momenta the process p 
D → n(pp) is determined by the
elementary pn charge exchange of the incoming proton
with the neutron in the deuteron, whereas the second
proton acts merely as a spectator. In this case, the de-
tected pp pair can be considered to be in the 1S0 final
state. Within the non-relativistic spectator mechanism, a
significant value of the tensor analyzing power T20 and
a vanishing vector analyzing power were predicted [14].
The corresponding cross-section is rather large, so that the
process p 
D → n(pp) can be considered as a good tool for
determining the deuteron tensor characteristics. Later de-
tailed investigations [16–19] of this process confirmed the
previous theoretical predictions [14]. The charge exchange
processes of this type have also been proposed for investi-
gations of other processes with deuterons, e.g. pp → Dπ+

reactions [20], ∆N systems [21], NNπ systems, inelastic
( 
D, 
D′) reactions off heavy nuclei to study isoscalar tran-
sitions ∆T = 0, ∆S = 1 [22] etc. In addition, the reaction
p 
D → n(pp) may be interesting in investigations of the el-
ementary NN amplitude. As shown in ref. [14], this reac-
tion can be used as a part of a complete set of experiments
to determine completely the amplitude of the charge ex-
change reaction pn → np [23]. One may also investigate
the influence of the nuclear medium on the NN ampli-
tude [24,25], or study the double spin flip processes in
quasi elastic scattering of deuterons from heavy nuclei [16].

The direct consequence of these facts is that nowa-
days the interest in investigations of charge exchange pro-
cesses does not abate. For example, at the cooler syn-
chrotron COSY in FZ Jülich a program to study similar
processes at relativistic energies has already started [4,
8] and a detailed investigation of polarization observables
is envisaged. Inspired by this, in a previous work [26] we
investigated the process p 
D → n(pp) within the impulse
approximation. The goal of the present paper is to con-
sider the charge exchange reaction at relativistic energies,
as accessible at COSY and upgraded Dubna accelerator
i) by taking into account the effects of final-state interac-
tion, ii) to check whether in this case the non-relativistic
predictions [14] hold and iii) whether the reaction still
can be regarded as a deuteron polarimeter tool and/or as
complementary source of an experimental determination
of the elementary charge exchange partial amplitudes. We

propose a covariant generalization of the spectator mecha-
nism [14] based on the Bethe-Salpeter (BS) formalism and
on a numerical solution of the BS equation with a realis-
tic one-boson exchange kernel [27,28]. Our amplitude of
the process in an explicitly covariant form allows for a de-
termination of any polarization observables. Nevertheless,
here we focus on calculations of the cross-section and the
tensor analyzing power T20 for kinematical conditions as
relevant for experiments at COSY. Vector analyzing pow-
ers of the deuteron are strictly equal to zero in our case,
since we consider the 1S0 NN final state. The correspond-
ing expressions are quite lengthy, so we do not present
an explicit comparison with the non-relativistic formu-
lae, nevertheless, the final results are written in a form
as close as possible to the non-relativistic case. We are go-
ing to compare our results, computed at non-relativistic
energies, with corresponding data and corresponding non-
relativistic calculations [18] thus demonstrating that our
formulae hold in the non-relativistic limit as well, as it
should be. We adopt for the process p 
D → n(pp) with a
slowly moving, small-excitation energy pp pair the same
mechanism as in [14], i.e., the process is treated, in the
deuteron center of mass, as a charge exchange between
the incoming proton and internal neutron with the second
proton as a spectator. The resulting pp pair is supposed
to be detected solely in the 1S0 state. Particular atten-
tion is paid to the pure impulse approximation, where the
final-state interaction in the pp pair is, for the time be-
ing, disregarded. Within the impulse approximation we
study systematically peculiarities of the reaction to find
proper kinematical conditions where the supposed mecha-
nism is adequate and to fix the choice of input parameters.
Then the final-state interaction in the 1S0 state is taken
into account by solving the inhomogeneous BS equation in
the one-iteration approximation, which allows one to nu-
merically compute the corresponding partial amplitudes.
The effects of final-state interaction are found to be sub-
stantial and essentially improve the agreement with data.
Methodological prediction for the COSY kinematics will
be presented as well.

This paper is organized as follow. In sect. 2 kinematics
and notation are introduced. A short review of the spin

structure of the amplitude
1
2

+ 1 → 1
2

+ 0 and definitions
of polarization observables are presented. Section 3 deals
with the invariant amplitude within the BS formalism and
defines the corresponding BS wave functions. A reduction
of the covariant form of the amplitude to the traditional
form in the two-dimensional spinor space is also performed
in this section. In the next section 4 a detailed study of
relativistic impulse approximation and a comparison with
data is given. In sect. 5 the procedure of accounting for
final-state interaction in the continuum within the BS for-
malism is discussed. The total BS wave function for the
1S0 configuration is presented, the corresponding numer-
ical calculations of the cross-section and tensor analyzing
power and a comparison with the available experimen-
tal data is performed. Conclusions and summary may be
found in sect. 6. Some cumbersome expressions are rele-
gated to the Appendices.
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Fig. 1. Spectator mechanism for the charge exchange process
pD → n(pp). The Bethe-Salpeter amplitude for the deuteron
bound state and the pp pair in the continuum are denoted
as Ψ and Ψ̄ , respectively. The elementary pn charge exchange
amplitude is symbolically represented by Ace.

2 Kinematics and notation

Since in the exclusive processes with three nucleons in the
final state we are interested in studying correlations in
the pp pair we select those of them which, in the deuteron
center-of-mass system, correspond to final states with one
fast neutron and a slowly moving proton-proton pair, i.e.
reactions of the type

p + 
D = n + (p1 + p2). (1)

A peculiarity of the processes (1) is that the transferred
momentum from the proton to the neutron is low, hence
the main mechanism of the reaction can be described
as a charge exchange process of the incoming proton off
the internal neutron, whereas the second proton in the
deuteron remains merely as a spectator. As well known
(see, e.g., ref. [29]) the differential cross-section of elemen-
tary charge exchange process pn → np exhibits a sharp
maximum at vanishing transferred momenta. Therefore, if
reaction (1) is indeed governed by a charge exchange sub-
process, then the resulting pp pair will be detected with
low total and relative momenta. Reactions of this kind can
fairly well be distinguished from other processes. For rel-
atively low initial energies, such reactions are quite well
experimentally investigated. In fig. 1, the diagram of such
processes is schematically depicted. The following nota-
tions are adopted: p = (Ep,p) and n = (En,n) are the
4-momenta of the incoming proton and outgoing neutron,
P ′ is the total 4-momentum of the pp pair, which is a
sum of the corresponding 4-momenta of detected protons,
p1 = (E1,p1), p2 = (E2,p2), P ′ = p1 + p2. The invariant
mass squared of the pair is sf , sf = P ′2 = (2m + Ex)2,
where m stands for the nucleon mass and Ex for the ex-
citation energy of the pair. Conform the supposed reac-
tion mechanism, the excitation energy Ex ranges to a few
MeV, say Ex = 0 − 8 MeV. At such low values of Ex,
the main contribution in the final state of the pp pair in
the continuum comes from the 1S0 configuration [18]. In
what follows all corrections from higher partial waves are
neglected, however, we realize that for higher values of Ex

an increasing role of these corrections is expected.

Further, the Dirac spinors

u(p, r) =
√

m + ε

(
χr

(σ · p)
m + ε

χr

)
(2)

normalized as ū(p)u(p) = 2m are introduced. Then the
differential cross-section for the reaction (1) reads

d9σ =
1

2
√

λ(p,D)
|Mfi|2 (2π)4δ(Pf − Pi)

× d3n
2En(2π)3

1
2

2∏
k=1

d3pk

2Ek(2π)3
, (3)

where λ(p,D) is the flux factor, Mfi is the invariant am-
plitude and the statistical factor 1/2 is due to two iden-
tical particles (protons) in the final state. By changing in
eq. (3) the kinematical variables from the momenta p1,2

to the relative and total momenta of the pair and taking
into account that there is no angular dependence in the
1S0 configuration, the cross-section can be written as

d3σ =
1

16π
√

λ(p,D)

√
1 − 4m2

sf
|Mfi|2

d3n
2En(2π)3

1
2
.

(4)
Since our numerical solution of the Bethe-Salpeter equa-
tion has been obtained in the deuteron rest system, all fur-
ther calculations are performed in that. The quantization
z-axis is chosen along the momentum p of the incoming
proton; the x and y axes will be specified below. Changing
the variables in (4) we arrive at

d2σ

dtdsf
=

1
2

1
64πλ(p,D)

√
1 − 4m2

sf

∫
dφ

(2π)3
|Mfi|2, (5)

where q = n− p, t = q2, sf = (D− q)2, and φ denotes the
azimuthal angle of the final neutron. Further we consider
only the case where the initial proton and the final neutron
are unpolarized and the polarization density matrix of the
initial deuteron, ρD, possesses an axial symmetry relative
to the z-direction, i.e.

ρD =
1
3

1 + pv T̂10 + pt T̂20,

where pv and pt are the vector and tensor polarization pa-
rameters, respectively. In this case the angular dependence
upon φ in eq. (5) is trivial. Finally one has

d2σ

dtdsf
=

1
2

1
64πλ(p,D)

√
1 − 4m2

sf

1
(2π)2

|Mfi|2, (6)

where the amplitude |Mfi|2 can be computed at arbitrar-
ily fixed value of φ, e.g., φ = 0. The procedure of com-
puting the amplitude Mfi consists in several stages: i) we
analyze general spin structure in terms of a decomposition
of Mfi over a relevant independent set of spin variables
with coefficients being invariant partial spin amplitudes
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of the process since all observables can be expressed via
these partial amplitudes, ii) the diagram in fig. 1 is com-
puted explicitly and the results for Mfi are regrouped to
obtain an expression in the same form as for the general
decomposition of Mfi, iii) from the direct comparison of
the expression with the phenomenological form the par-
tial spin amplitudes are found and the polarization ob-
servables computed.

By virtue of zero angular momentum of the final pair,
the process (1) is of the type 1/2 + 1 = 1/2 + 0, for
which the symmetry restrictions leave only six indepen-
dent (complex) partial amplitudes. The choice of their ex-
plicit representation depends upon the kinematical con-
ditions of the attacked problem. One may choose the he-
licity representation, or the representation with a given
spin projection for specific choices of the quantization axis
etc. In this paper, we choose the following way to de-
termine the partial amplitudes (see also [30]): initial |i〉
and final |f〉 states of the system, besides other quan-
tum numbers, are characterized by the spin projections
on the z-axis; in the matrix element Mfi this spin de-
pendence is written explicitly by emphasizing in |i〉 and
|f〉 the 3-polarization vector of the deuteron and the two-
component Pauli spinors for nucleons. We introduce, in
the deuteron center of mass, where D = 0, the three basis
vectors as follows:

c =
p
|p| , b =

[p × n]
|[p × n]| , a = [b × c]. (7)

Then the amplitude Mfi can be represented in the form

Mfi ≡ T M
r′r = [χ+

r′ ]α (Mαβ ξM ) [χr]β , α, β = 1, 2, (8)

where r′, r and M are the spin projections for the neutron,
proton and deuteron, respectively. The amplitude Mαβ

is a vector in the coordinate space and a matrix in the
spinor basis and consequently can be decomposed over
the introduced basis vectors (7) and Pauli matrices σi (i =
x, y, z) as

Mαβ = iAb δαβ + B b (σ · b)αβ + C a (σ · a)αβ +
+ D a (σ · c)αβ + E c (σ · a)αβ + F c (σ · c)αβ . (9)

In eq. (8 ), ξM stands for the polarization vector of the
deuteron in its center-of-mass system:

ξ+1 = − 1√
2


1

i
0


 , ξ−1 =

1√
2


 1

−i
0


 , ξ0 =


 0

0
1


 .

(10)
Due to the use of the two-dimensional spin and 3-
dimensional vector representation, eqs. (8) and (9) are not
manifestly covariant. Nevertheless, such a representation
of partial amplitudes is of most general form and valid in
both relativistic and non-relativistic considerations. This
may immediately be seen if one expresses in covariant ma-
trix elements the polarization 4-vector of the deuteron ξM
(in any reference system) via the 3-dimensional ξM as

ξM =
[
(D · ξM )

MD
, ξM + D

(D · ξM )
MD(ED + MD)

]
,

and passes from the 4-spinors defined in eq. (2) to Pauli
spinors χr.

For convenience, the y and x axes are oriented along
b and a, respectively. In this case the neutron azimuthal
angle φ can be put equal to zero. The z-axis, as mentioned
above, is parallel to c. The three variables, upon which the
partial amplitudes A,B, ...F depend, are chosen to be the
total initial energy s, the transferred momentum t, and
the invariant mass of the pp pair sf . These amplitudes
are related with the spin amplitudes T M

r′r via the following
expressions:

A = (T 1
− 1

2− 1
2

+ T 1
1
2

1
2
)/
√

2,

B = −(T 1
1
2− 1

2
− T 1

− 1
2

1
2
)/
√

2,

C = −(T 1
1
2− 1

2
+ T 1

− 1
2

1
2
)/
√

2,

D = (T 1
− 1

2− 1
2
− T 1

1
2

1
2
)/
√

2,

E = T 0
1
2− 1

2
,

F = T 0
1
2

1
2
. (11)

Note that having computed the amplitudes A,B, ...F , all
polarization observables for the process (1) can be found
as proper combinations of these partial amplitude. So, if
an operator O corresponds to a measurable physical quan-
tity, then its mean value is

〈O〉 = 6
Tr (MOM+)
Tr (MM+)

, (12)

where the denominator corresponds to the cross-section of
the reaction (1) with unpolarized particles

1
6
Tr
(
MM+

)
=

1
3
(AA∗ + BB∗ + CC∗ + DD∗ + EE∗ + FF∗).

For instance, the tensor analyzing power 〈T20〉 is

〈T20〉 = 6
Tr
(
M T̂20 M+

)
Tr (MM+)

=
√

2
Tr (MM+)

(AA∗ + BB∗ + CC∗ + DD∗

−2 [EE∗ + FF∗]). (13)

Note that the representation of the amplitude Mfi by
eqs. (8) and (9) holds if the initial and final states can
be described by wave functions (pure spin states), other-
wise for mixed states the square of Mfi must be averaged
with the spin density matrices

ρN =
1
2

∑
r

|r〉〈r|, ρD =
1
3

∑
M

|M〉〈M |. (14)

An explicit covariant expression for the deuteron density
matrix can be found in ref. [31]. In the present paper the
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amplitudes T M
r′r and observables for the reaction (1) are

evaluated within the BS formalism. It is worth noting that
in theoretical considerations of high-energy reactions with
deuterons as target and two interacting nucleons in the
final state (scattering or bound state) always, at least one
of two-nucleon systems is moving, consequently Lorenz
boost effects must be treated in a consistent way. In our
opinion, the most appropriate approach for these purposes
is the BS formalism where a consistent description of the
deuteron bound state and scattering states of the NN pair
as well as the off-mass shellness of nucleons and Lorenz
boost effects may be achieved [11]. There are other ap-
proaches to the relativistic description of reactions with
deuterons. For instance, the Gross equation [32], which is
a variant of the BS approach with one nucleon on-mass
shell; it provides a covariant description of processes like
(1). An analysis of results within the Gross and BS ap-
proaches shows [33] that for internal relative momenta up
to |k| ∼ 1.5 GeV/c the deuteron amplitudes and wave
functions are almost identical.

In what follows we compute the amplitude T M
r′r by

evaluating the diagram in fig. 1 within the BS formalism.
Neglecting the initial-state interaction between the
incoming proton and the deuteron and the final-state
interaction of the outgoing neutron with the pp pair
simplifies the calculation. The initial and final states can
then be written as direct products of spinors of the fast
particle and the BS amplitudes of the NN system, which
correspond to solutions of the BS equation for bound (i.e.
the initial deuteron) or scattering states (i.e. the pair in
the continuum).

3 Invariant amplitude

By using the Mandelstam technique [34], the covariant
matrix element corresponding to the diagram in fig. 1 can
be written in the form

T M
r′r = ūr′

γ (n)ur
δ(p)

∫
d4k Φ̄P ′

(q

2
+ k
)
αβ

×
(D̂

2
+ k̂ − m

)
αµ

ΦM (k)µν Ace
βγ,δν . (15)

In eq. (15) the deuteron BS amplitude ΦM and the con-
jugate amplitude Φ̄P ′ of the pp pair are solutions of the
corresponding BS equation, and the charge exchange ver-
tex Ace corresponds to a 4-point Green function of the
subprocess pn → np with, in the most general case, off-
mass shell nucleons.

It is convenient to change from outer products of
spinors and amplitudes to the usual matrix structures.
For this sake we redefine the BS amplitude [35] as

Φ(k) ≡ Ψ(k)UC , Ψ̄(k) = γ0Ψ
†(k)γ0,

where UC = iγ2γ0 is the charge conjugation matrix. Then
the new amplitudes Ψ(k) may be considered as usual 4×4
matrices in the spinor space, and the BS equation becomes
an integral matrix equation. To find a numerical solution

of the BS equation usually the amplitude is decomposed
over a complete set of matrices, and one solves the result-
ing integral equation for the coefficients of such a decom-
position. These coefficients are known as the partial BS
amplitudes. There are eight independent partial ampli-
tudes for the deuteron, and the specific form of them de-
pends on the chosen matrix representation. In the present
paper we choose the ρ-spin representation [36] for the par-
tial amplitudes and, since in the considered reaction the
transferred momenta is rather small, all the amplitudes
with at least one negative ρ-spin are disregarded as they
may play a role only at high momenta (see, e.g., [37] for
the justification). Then we are left with two “++” par-
tial amplitudes known as S and D components within the
ρ-spin classification. The numerical solution for the BS
amplitudes has been found [27,28] by solving the BS equa-
tion with a realistic one-boson exchange kernel including
π, ω, ρ, σ, η, δ mesons. In the adopted approximation, the
BS amplitude reads (see also Appendix A)

ΨM (k) = ΨM
S++(k) + ΨM

D++(k). (16)

The charge exchange vertex Ace is also a matrix in
the spinor space and, for consistency of the approach, it
would be preferable to decompose it into partial vertices
as in the case of the BS amplitude and to find the coeffi-
cients from the NN charge exchange reactions. However,
this is a rather cumbersome procedure in which one can
determine only the vertices for on-shell NN processes. To
extend it to off-shell nucleons, one needs to specify some
method, which inevitably requires theoretical models and
additional approximations. In our case, in the process (1)
the transferred momenta and energies are considered rela-
tively small, hence the virtuality of nucleons in the vertex
Ace may be disregarded. Then Ace may be expressed di-
rectly via the amplitude fr′s′,sr of the real charge exchange
processes p + pn = pp + n with all particles on the mass
shells

fr′s′,sr = ūs′
α (pp) ūr′

β (n)Ace
αβ,γδ ur

γ(p)us
δ(pn). (17)

(Note that within a formalism based on the Feynman
diagram technique the replacement of the off-mass shell
vertex Ace in triangle-type diagrams at low momentum
transfer by its on-mass shell analogue, eq. (17), is a com-
monly used approximation. One can avoid it by exploiting
other methods, e.g., the dispersion relation technique [38],
where all the nucleons are taken on-mass-shell and the
deuteron-nucleon-nucleon vertex is treated as the physi-
cal decay of a virtual deuteron into two real nucleons with
subsequent phenomenological parameterization of the ver-
tex [39]. Since in the present paper the process (1) is con-
sidered at low momentum transfer, we can expect that
the two approaches, i.e., the adopted diagram method
with the approximation (17) and the dispersion relation
method [38,39] will provide the same results.) Then

T M
r′r =

∑
ss′

1
(2m)2

∫
d4k fr′s′,srū

s(pn)ΨM (k)

×
(1

2
D̂ − k̂ + m

)
Ψ̄P ′(k − 1

2
q)us′(pp). (18)
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Note that the amplitude (18) is manifestly covariant. For
the final 1S0-state within the ρ-spin classification the BS
amplitude in the center of mass of the NN pair is repre-
sented by four partial amplitudes 1S++

0 , 1S−−
0 , 3P+−

0 and
3P−+

0 [35], which for the sake of brevity in what follows are
denoted as φ1, . . . , φ4. In order to avoid an explicit Lorenz
boost transformation to the laboratory system, it is con-
venient to write the 1S0 amplitude in a covariant form

√
4π Ψ̄P ′(p) = −b1γ5 − b2

1
m

(γ5p̂1 + p̂2γ5)

−b3(γ5
p̂1 − m

m
− p̂2 + m

m
γ5)

−b4
p̂2 + m

m
γ5

p̂1 − m

m
, (19)

where p1,2 = P ′/2 ± p, and p is the relative momentum.
The four Lorenz invariant functions bi ≡ bi(P ′p, p2) in
the center of mass of the pair are linear combinations
of the amplitudes φi ≡ φi(r0, |r|), i = 1, . . . , 4 [35]
(see Appendix B). Now it is sufficient to express the
amplitude of the process (1) in terms of deuteron “++”
components and (19) to implicitly account for the Lorenz
boost effects [11]. For the final state of the pair, as in the
deuteron case, all the amplitudes with negative ρ-spins
are neglected as well.

Substituting eqs. (19) and (16) into eq. (18) the matrix
element may be written in terms of two-component spinors
and 3-vectors as

ūs(pn)ΨM (k)

(
P̂

2
− k̂ + m

)
Ψ̄P ′
(
k − q

2

)
us′(pp) =

1
16π

m

E

1
2MD − k0 − E√
(E + m)(p0

p + m)

{
χ†
s(σ · ξM )χs′

×
(

ψS − ψD√
2

)
C1 + χ†

s(σ · k)χs′(k · ξM )ψD C2

+
[
−χ†

s(σ · q)χs′ (k · ξM )
(
ψS +

√
2ψD

)
+χ†

s(σ · k)χs′ (q · ξM )
(

ψS − ψD√
2

)

+χ†
sχs′ i ([q × k] · ξM ) (ψS − ψD√

2
)
]

C3

}
φ1(r0, |r|)),

(20)

where the quantities C1, C2, C3 have a pure kinematical
origin and are independent of spin variables. Their explicit
form can be found in the Appendix B. Now, from eq. (20)
it is clearly seen how to compute T M

r′r at given spin vari-
ables r′, r,M and, consequently, the invariant amplitudes
A,B, ...F (11) and observables (12), (13). The partial am-
plitudes φi may be found from the BS equation, which, in
the simplest case of pseudo-scalar exchanges reads as

Ψ̄P ′(p) = Ψ̄0
P ′(p) + ig2

πNN

∫
d4p′

(2π)4
∆(p − p′)

× S̃(p2)γ5Ψ̄P ′(p′)γ5S(p1), (21)

where ∆ and S are the scalar and spinor propagators re-
spectively, S̃ ≡ UC S U−1

C , and Ψ̄0
P ′(p) is the free ampli-

tude corresponding to two non-interacting nucleons (the
relativistic plane wave). The solution of eq. (21) may be
presented as a Neumann-like series, the first term of which
is the first one from eq. (21):

Ψ̄P ′(p) = Ψ̄0
P ′(p) + Ψ̄ i

P ′(p). (22)

The second part in eq. (22) is entirely determined by the
interaction and may be symbolically referred to as scat-
tered wave. For the 1S0 state one has

Ψ̄0
P ′(r)|P ′=(

√
sf ,0) = φ0

1(r0, |r|)Γ1S++
0

(r̂),

φ0
1(r0, |r|) = 2 (2π)4

1√
4π

1
|r∗|2 δ(r0) δ(|r| − |r∗|),

where r = (r0, r) is the relative 4-momentum of the pair
(the variable of the momentum space), |r∗| =

√
sf/4 − m2

is the experimentally measured relative 3-momentum of
the pair, Γ1S++

0
(r̂) is the spin-angular harmonic for the

1S0 state [35]. To determine the scattered wave in eq. (22)
it is necessary to solve the BS equation of the type (21) in-
cluding all the above-mentioned exchange mesons. Solving
the BS equation in the continuum is a much more cumber-
some procedure than solving the homogeneous BS equa-
tion. Besides difficulties encountered in solving the lat-
ter (singularities of amplitudes, poles in propagators, cuts
etc.) the former even does not allow the usual Wick rota-
tion [40] to the Euclidean space, and there are no rigorous
mathematical methods to solve eq. (21) in the Minkowski
space1. However, an approximate solution of eq. (21) may
be obtained by employing the so-called “one-iteration ap-
proximation” [11], within which one may obtain a rather
good estimate of the interaction term (see below).

4 Relativistic impulse approximation

We start our analysis of the reaction (1) by disregarding
the interaction term in eq. (22), i.e. putting

φ1(r0, |r|) = φ0
1(r0, |r|), φ2 = 0, φ3 = 0, φ4 = 0.

(23)
In this case the final state of the pp pair is described by
the free part φ0

1(r0, |r|), what obviously means the 1S0

part of two plane waves. Within the impulse approxima-
tion all formulae become much simpler and one may pre-
liminary investigate the main features of the process (1),
fix parameterizations of the elementary charge exchange
amplitude, find proper kinematical regions where the as-
sumptions made hold etc.

One has

δ(r0) = δ[(P ′, k − 1
2
q)/

√
sf ], (24)

δ(|r| − |r∗|) = δ

(√
−(k − 1

2
q)2 −

√
1
4
sf − m2

)
, (25)

1 Actually there is one realistic solution of the inhomoge-
neous BS equation in the ladder approximation, obtained by
Tjon [41].



L.P. Kaptari et al.: Exclusive charge exchange reaction pD → n(pp) within the Bethe-Salpeter formalism 125

and

φ0
1(r0, |r|) = 2 (2π)4

1√
4π

1
E|k||q|

√
sf

1
4sf − m2

× δ(k0 − [
1
2
MD − E])

× δ

(
cos θkq +

s − 2E(MD − q0)
2|k||q|

)
. (26)

In eq. (26), θkq is the angle between k and q. Then, with
eqs. (23), (26) the matrix element in (18) reads

T M
r′r =

∑
s,s′

|k|max∫
|k|min

√
Md

2π
|k|d|k|

|q|E
√

( 1
4sf−m2)(E + m)(p0

p + m)

×
2π∫
0

dφkfr′s′,sr×
{

χ†
s(σ ·ξM )χs′

(
US−

UD√
2

)(
1
2
sf +mP ′

0

)

+ χ†
s(σ · Rqk)χs′(ξM · Rqk)

3√
2
UD

P ′
0

E − m

− χ†
s(σ · q)χs′(ξM · Rqk)

(
US +

√
2UD

)
+ χ†

s(σ · Rqk)χs′(q · ξM )
(

US − UD√
2

)

+ δss′i([q × Rqk] · ξM )
(

US − UD√
2

)}
. (27)

Here we introduced the corresponding BS wave functions

US,D ≡ GS,D

4π
√

2Md(Md − 2E)
, (28)

where GS,D are the BS vertices [37]. In this notation,
the introduced quantities US,D correspond fully with the
non-relativistic S and D wave functions of the deuteron,
and the non-relativistic treatment of the results in terms
of usual wave functions becomes more transparent. In
eq. (27), the matrix Rq describes the rotation about the
y-axis by an angle θ (the angle between q and z-axis)
defined as

Rq =


 cos θ 0 sin θ

0 1 0
−sin θ 0 cos θ


 ,

and the limits of integration over |k| are as follows

|k|max,min =

∣∣∣∣∣
√

1 +
q2

sf

√
1
4
sf − m2 ± 1

2
|q|
∣∣∣∣∣.

Now it is straightforward to compute T M
r′r for any value

of spin indices and, by virtue with eq. (11), the quan-
tities A,B, ...F . Here it is worth commenting how the
charge exchange amplitude fr′s′,sr is involved into our
numerical calculations. Beside spin indices this ampli-
tude also depends upon two Mandelstam invariants be-
ing the total energy of the subprocess of charge exchange,
spn = (D/2 + k + p)2 (where p is the momentum of the

initial proton), and the invariant transferred momentum
t = (n− p)2, which is a common variable for both the full
reaction (1) and the subprocess of NN reaction. From
kinematics, the 4-momenta of the “initial” neutron and
“final” proton are D/2+k and P ′/2+k−q/2, respectively,
which might be both off-mass shell. In the relativistic im-
pulse approximation after integration with the δ-function,
the final proton receives an on-mass shell momentum,
pp = P ′/2 + k − q/2. Consequently here only the neutron
from the deuteron remains off-mass shell. Hence we are left
with a charge exchange amplitude with one nucleon off-
mass shell and a varying

√
s. In ref. [29], the dependence of

the charge exchange amplitude upon the initial energy has
been found to be rather weak (at initial energies in a range
of few GeV). Therefore in our calculations, by neglecting
the off-mass shellness of the neutron, the charge exchange
amplitude is taken from the real NN process at equiva-
lent values of

√
s (the invariant energy of the incoming

proton and internal neutron). Moreover, since this ampli-
tude is essentially independent of the azimuthal angle φk,
it is taken out from the corresponding integration. Such a
procedure of implementation of real amplitudes into cal-
culations where one or several nucleons are off the mass
shell is commonly adopted in the literature [14,42,43,31]
with an “a posteriori” justification from the comparison
of numerical results with experimental data.

4.1 Numerical results

In our numerical calculations we employ a parameteriza-
tion of the elementary charge exchange amplitude from
ref. [29] and parameterizations from partial-wave analysis
performed by different groups [44,45], which are available
via web, cf. [46,47]. The partial charge exchange ampli-
tudes are available in the helicity basis as partial helicity
amplitudes

f1 = 〈+ + | Ace | + + 〉, f2 = 〈+ + | Ace | − − 〉,
f3 = 〈+ − |Ace | + −〉,
f4 = 〈+ − |Ace | − + 〉, f5 = 〈+ + | Ace | + −〉, (29)

normalized as

dσce

dt
=

1
32π s(s − 4m2)

{
4∑

i=1

|fi|2 + 4|f5|2
}

. (30)

Since in our matrix element (27) the spin amplitudes
fr′s′,sr are defined in the deuteron center of mass, the
helicity amplitudes (29) must be first boosted along the
direction p + k from the center of mass of the pn sys-
tem to the laboratory system, and then transformed to
spin amplitudes by Wigner rotations. Taking into account
that the procedure of Lorenz boost itself for each particle
results in an additional helicity Wick rotation [48], one
needs eight rotations for each amplitude in eq. (29) (see
Appendix C for details).

In the fig. 2 the partial helicity amplitudes (29) are
presented as a function of the transferred momentum |q|
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Fig. 2. Partial helicity amplitudes of eq. (29) vs. the trans-
ferred momentum |q| for different parameterizations. Solid
curves correspond to the partial-wave analysis of [47,45], while
the dashed curves are the high energy parameterization given
in [29]. The amplitudes are dimensionless.

and energy corresponding to the initial momentum in the
laboratory system |p| = 2.5 GeV/c. The full lines rep-
resent the partial-wave analysis [45] whereas the dashed
line depict results of the analytical parameterization from
ref. [29]. Both parameterizations describe equally well the
unpolarized charge exchange cross-section, nevertheless a
substantial difference is seen between two sets of parame-
terizations. Obviously, the unpolarized cross-section is not
sensitive to details of partial amplitudes, and for a more
precise determination one needs more independent mea-
surements of polarization observables. In this context, we
remark that such reactions can be considered as an addi-
tional source of information about the elementary ampli-
tude, as pointed out, e.g., in ref. [23], since the process (1)
is entirely governed by the elementary subprocess of NN
charge exchange.

In what follows we are interested in systematical cal-
culations of the cross-section and tensor analyzing power
of the process (1) for kinematical conditions achievable at
COSY [4]. However, first we perform calculations for such
kinematical conditions for which experimental data are
already available [19]. Note that experimentally one mea-
sures the cross-section averaged over some interval of the
excitation energy of the pp pair. Conformly, we define the

differential cross-section dσ/dt as the double differential
cross-section (6) averaged over a given bin of energy

(
dσ

dt

)
k

=
1

(8π)3λ

∫
Rk

dsf

√
1− 4m2

sf
|Mfi|2, k = 1, 2, 3...,

(31)
where k labels the intervals of Ex given in the experiment.
At SATURN-II [19], where the process (1) has been inves-
tigated in details at initial momenta of protons |p| = 0.444
and 0.599 GeV/c, the mentioned intervals of Ex are

R1 : 0 ≤ Ex ≤ 1MeV, (32)
R2 : 1 ≤ Ex ≤ 4MeV, (33)
R3 : 4 ≤ Ex ≤ 8MeV. (34)

The intervals R1 and R2 fit into the COSY kinematics [4]
as well. Note, that under the kinematical conditions (32-
34) the variable t is indeed small, ranging in an interval
from 0 to 0.16 (GeV/c)2.

In figs. 3 and 4 the cross-section and tensor analyzing
power T20 for process (1) are presented. The initial en-
ergy corresponds to a typical COSY momentum |p| = 2.5
GeV/c. The solid lines depict results with the elemen-
tary amplitude taken from ref. [45], whereas the dashed
lines are results with the parameterization from ref. [29].
As expected, since different parameterizations equally well
reproduce the elementary charge exchange cross-section,
the unpolarized cross-section of the process (1) is not sen-
sitive to parameterizations of the elementary amplitude.
An opposite situation occurs when calculating the polar-
ization observables defined in eq. (12) for which the con-
tribution of partial amplitudes is non-diagonal and inter-
ferences might be important. This is clearly illustrated
in fig. 4, where the tensor analyzing power (13) exhibits
indeed a strong sensitivity to parameterizations of par-
tial amplitudes and practically does not depend upon the
chosen bin of the excitation energy. From this picture one
may conclude that an experimental investigation of the
tensor analyzing power may constrain further parameter-
izations of the elementary charge exchange amplitude at
high energies.

As already mentioned, the process (1) has been ex-
perimentally investigated at SATURN-II [19]. Although
at such energies the final-state interaction cannot be
neglected and the simple impulse approximation is too
rough, a comparison of data with theoretical results is
rather instructive. In figs. 5 and 6 we present results of
calculations of the cross-section (31) and tensor analyzing
power T20 (13) defined by eqs. (27-31) together with avail-
able experimental data. The full lines have been obtained
with parameterizations of the elementary amplitude from
refs. [44,45], while the dashed lines with the parameteriza-
tion given in ref. [29]. From fig. 5 it is seen that the impulse
approximation qualitatively describes the general shape of
the cross-section as a function of the transferred momen-
tum |q|. For low values of |q|, say up to 0.2 GeV/c, and
in the interval of the pair excitation energy 1 ≤ Ex ≤ 4
MeV here is even a good agreement with data, in con-
trast with other intervals of Ex and higher values of |q|.
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Fig. 3. Unpolarized cross-section, eq. (31), calculated within
the relativistic impulse approximation at a typical COSY ini-
tial momentum for several bins of excitation energy of the pp
pair. Results of calculations with two parameterizations of the
NN charge exchange amplitude are exhibited (solid curves are
obtained with the amplitude from [47,45], the dashed curves
from [29]).

From this and from the results of non-relativistic calcula-
tions [14], where final-state interaction and higher partial
waves have been taken into account, one may conclude
that at high values of transferred momentum the effects
of final-state interaction in the 1S0 state become domi-
nant. At higher excitation energies the interaction effects
are not so significant, however here corrections from other
partial waves may become important. The same conclu-
sions can be drawn from fig. 6, where the tensor analyzing
power, computed with two parameterizations (as above,
the solid lines correspond to ref. [44,45], dashed curves
to ref. [29]), is compared with experimental data. From
fig. 6 it is also obvious that a qualitative agreement with
data for the tensor analyzing power may be achieved only
by using the elementary charge exchange amplitude from
the partial-wave analysis [44,45], while the parameteriza-
tion [29] results even in opposite sign for T20. This is a
direct indication that a more sophisticated partial-wave
analysis gives more reliable partial helicity amplitudes.
Nevertheless, since such an analysis has been performed
for low and intermediate energies (up to few GeV), a fur-
ther tuning of partial amplitudes (29) at relativistic ener-

Fig. 4. The same as in fig. 3 but for the tensor analyzing power
T20 (13).

gies is still desirable. Together with the proper choice of
kinematics at high energies (i.e. a kinematical situation
where the role of higher partial waves in the final state,
e.g., triplet states, is suppressed [23]) one may expect that
the proposed mechanism will adequately describe reac-
tions of the type (1) and corresponding information may
be obtained. Note that in all the above calculations the
vector analyzing power is strictly zero.

5 One-iteration approximation

As mentioned, for a consistent relativistic analysis of re-
actions with deuterons and two interacting nucleons in
the continuum one should solve the BS equation for both
bound state and scattering state within the same interac-
tion kernel. We have found a numerical solution for the
deuteron bound state with a realistic one-boson exchange
potential [27]. The BS equation, after a partial decom-
position over a complete set of matrices in the spinor
space, has been solved numerically by using an iteration
method. We found that the iteration procedure converges
rather quickly if the trial function is properly chosen, e.g.,
if in the BS equation the combination of the type (28) is
used as trial functions with non-relativistic solutions of the
Schrödinger equation. In such a case, even after the first
iteration, the BS solution coincides with the exact one up
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Fig. 5. Comparison of the non-polarized differential cross-
section eq. (31) within the impulse approximation at non-
relativistic initial energies (|p| = 0.444 GeV/c (left panel) and
|p| = 0.599 GeV/c (right panel)), with experimental data [19].
Solid curves correspond to the elementary charge exchange
amplitude from the partial-wave analysis from refs. [47,45],
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to relative momentum p ∼ 0.6–0.7 GeV/c. This circum-
stance can be used if one needs an approximate solution
of the BS equation at not too large momenta p ≤ 0.5–
0.7 GeV/c. This is just our case, since in reaction (1) the
relative momentum of the pp pair is expected to be rather
small and the scattering part of the amplitude (22) can
be obtained from eq. (21) by one iteration, provided the
trial function is properly chosen.

5.1 Formalities

To solve eq. (21) we proceed as follow (cf. ref. [11]): i) for
simplicity, in the inhomogeneous BS equation we leave
only the pseudo-scalar isovector exchange (π-mesons),
ii) write instead of eq. (21) the mixed BS equation by
introducing in both the left-hand side and the free term
the BS vertices, i.e.

GP (p) = G0
P (p) − ig2

πNN

∫
d4p′

(2π)4
γ5ΨP (p′)γ5

(p − p′)2 − µ2
π

, (35)

iii) bearing in mind that the BS partial vertices may be
obtained from the same spin-angular functions Γα(p), by
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Fig. 6. The same as in fig. 5 but for the tensor analyzing power
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replacing p ↔ −p [37], we write the corresponding partial
BS equation

G1S++
0

(p0, |p|) = G0
1S++

0
(p0, |p|)

−ig2
πNN

∫
d4p′dΩp

(2π)4
(EpEp′ − m2 + (pp′))

EpEp′

× φ1(p′0, |p′|)
(p − p′)2 − µ2

π

. (36)

Further by disregarding the dependence upon p0 in the
meson propagator in eq. (36) and then using the stan-
dard representation of propagators via generalized Legen-
dre polynomials Ql and restoring the BS equation in terms
of partial amplitudes, one obtains

φ1S++
0

(p0, |p|) = φ0
1S++

0
(p0, |p|)

−g2
πNN

4π
1(

1
2

√
sf − Ep

)2 − p2
0

×
∞∫
0

d|p′|
2π

|p′|
|p|

1
EpEp′

[
(EpEp′ − m2)Q0(ỹµ)

−|p||p′|Q1(ỹµ)]u1S0(sf , |p′|), (37)

where ỹµ =
p2 + p

′2 + µ2

2|p||p′| . In obtaining (37) the inte-

gration over p′0 has been carried out in the pole p̃0 =
1
2
√

sf − Ep′ and, similar to eq. (28), we define the BS
wave function in the continuum as

u1S0(sf , |p′|) =
g1S++

0
(p̃0, |p′|)

√
sf − 2Ep′

. (38)
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Fig. 7. Results of calculations of the differential cross-section
eq. (31) with taking into account the effects of final-state in-
teraction in the 1S0 state (solid curves). Experimental data
are those from SATURN-II [19], the elementary amplitude has
been taken from refs. [47,45]. The dashed curves depict the
results of calculations within the pure impulse approximation
(cf. solid curve in fig. 5).

Now, if we restrict ourselves to only one iteration in (37)
taking the trial function (38) as a non-relativistic solution
of the Schrödinger equation, e.g. the Paris wave function
uNR

1S0
(sf , |p′|), the BS amplitude is obtained as

φ1S++
0

(p0, |p|) = φ0
1S++

0
(p0, |p|) −

Go.i.(p̃0, |p|)(
1
2

√
sf − Ep

)2 − p2
0

,

(39)
where the “one-iteration” BS vertex Go.i.(p̃0, |p|) is de-
fined by

Go.i.(p̃0, |p|) =
1
π

g2
πNN

4π

{[
1 − Ep

m

]

×
∞∫
0

dr e−µrj0(pr)uNR
1S0

(r)

+
|p|

mEp

∞∫
0

dr
uNR

1S0
(r)

r
e−µr (1 − µr) j1(pr)


 . (40)

From eqs. (39) and (40) one can easily find the non-
relativistic analogue of the obtained formulae. The free
term in eq. (39) together with the first term in eq. (40)
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Fig. 8. The same as in fig. 7 but for the tensor analyzing power
(13).

reflect the non-relativistic equation for the 1S0 wave func-
tion, while the second term in (40) turns out to be a cor-
rection of purely relativistic origin.

5.2 Numerical results

In figs. 7 and 8 we present results of numerical calcula-
tions of the cross-section and tensor analyzing power T20

given by eqs. (31), (13), (8), (20) and (39-40). The ele-
mentary charge exchange amplitude has been taken from
ref. [45] and the non-relativistic trial function uNR

1S0
(r) as

the solution of the Schrödinger equation within the Paris
potential [49]. The BS S++ and D++ amplitudes are those
from the numerical solution [27] obtained with a realis-
tic one-boson exchange interaction. The dashed curves in
figs. 7 and 8 correspond to results within the relativis-
tic impulse approximation, while the solid lines depict re-
sults with taking into account the final-state interaction
in one-iteration approximation. It is seen that in all three
energy bins the agreement with data for the cross-section
is essentially improved. This concerns especially the range
1 ≤ Ex ≤ 4 MeV. For the energy bin close to zero there is
still a disagreement with data at low transferred momenta
which probably may be related to the fact that in our cal-
culations we have not taken into account the Coulomb
interaction within the pp pair. For higher excitation ener-
gies (Ex ∼ 8 MeV), other partial waves (e.g. triplet state)
in the pp final state contribute and, within the adopted as-
sumptions, one may expect only semi-quantitative agree-
ment with data. From fig. 7 one may conclude that at low
excitation energies the supposed mechanism for the reac-
tion (1) (i.e. charge exchange subprocess with interaction
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action in the 1S0 state (solid curves). Kinematical conditions
correspond to those proposed in [4] for experiments at COSY.
Elementary amplitude from refs. [47,45]. The dashed curves
depict results of calculations within the pure impulse approxi-
mation (cf. solid curves in fig. 3).

in 1S0 state of the pp pair in the continuum) seems to be
correct. Moreover, from a comparison of the left and right
panels in fig. 7 one may expect that the higher initial en-
ergy the larger kinematical region where the mechanism
holds. Figure 8 demonstrates that the tensor analyzing
power is less sensitive to final-state interaction effects. As
a matter of fact, the tensor analyzing power (13), being a
ratio of non-diagonal products of partial amplitudes to the
diagonal ones, serves as a measure of the quality of param-
eterization of partial amplitudes and their mutual relative
phases. This has been pointed out in a series of publica-
tions (see, e.g., refs. [7,11]), where a good simultaneous
description of cross-sections and T20 in reactions of the
deuteron break-up or elastic scattering of protons, is still
lacking. Nevertheless, since in the process (1) the behav-
ior of the partial amplitudes (11), as seen from eq. (20), is
mostly governed by the elementary charge exchange am-
plitudes, an experimental investigation of the tensor ana-
lyzing power T20 in reactions of the type (1) can essentially
supplement data on the NN charge exchange amplitudes
at high energies.

In figs. 9 and 10 we present the predicted cross-section
and tensor analyzing power at high energies relevant for
COSY and Dubna accelerator. It is immediately seen that
the cross-section is substantially decreasing with increas-
ing energy, nevertheless it remains large enough to be ex-
perimentally easily accessible. Another peculiarity of the
studied process at relativistic energies is that the tensor
analyzing power T20 does not change the sign remaining
positive in a large kinematical region, in contrast to lower
energies (cf. fig. 8). Note again, that in the above calcu-
lations the vector polarization of the deuteron is strictly
zero.

From the performed analysis one can conclude that
there is a kinematical region for the excitation energy,

0.0 0.1 0.2 0.3 0.4

0.3

0.4

0.5

|q|, GeV/ c

|p | = 2.68 GeV/ c

Ex= 1 - 4 MeV

T
20

Fig. 10. The same as in fig. 9 but for the tensor analyzing
power (13).

Ex < 5 MeV, and transferred momentum, |q| ≤ 0.3–
0.4 GeV/c (i.e. the COSY [4] kinematics), for which the
mechanism of the reaction (1) is fairly well described
within the spectator approach by an elementary pn charge
exchange subprocess, for active nucleons, with detection of
the pp pair in the 1S0 final state. Our covariant approach
agrees with previous non-relativistic calculations and al-
lows for predictions of the cross-sections and polarization
observables at intermediate and relativistic energies, in
particular, for kinematical conditions which are realized at
COSY. The predicted cross-sections of the process and the
tensor analyzing power T20 are large enough to be used,
in a large range of initial energies, for determining prop-
erties of the polarized deuteron, provided experimentally
one simultaneously detects a vanishing vector polarization
of deuterons.

6 Summary

In summary, the performed covariant analysis of the
reaction 
D(p, n)pp with the two final protons in a 1S0

state allows us to conclude that, as in the non-relativistic
limit, such a process can be used as an effective deuteron
polarimeter also at relativistic energies, in particular,
at the range covered by COSY at Jülich and upgraded
Dubna accelerator. Additional information about the
elementary charge exchange amplitude at high energies
can be obtained from precision data with known deuteron
polarization.
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Appendix A. Deuteron state

The BS amplitudes of the deuteron, eq. (16), in the
deuteron center of mass explicitly read

ΨM
S++(k) = N (k̂1 + m)

1 + γ0

2
ξ̂M (k̂2 − m)ψS(k0, |k|),

(A.1)

ΨM
D++(k) = − N√

2
(k̂1 + m)

1 + γ0

2

×
(

ξ̂M +
3

2|k|2 (k̂1 − k̂2)(kξM )
)

× (k̂2 − m)ψD(k0, |k|), (A.2)

where k1,2 are on-mass shell 4-vectors,

k1 = (E,k) , k2 = (E,−k) ,

k = (k0,k) , E =
√

k2 + m2 , (A.3)

and ψS,D(k0, |k|) are the partial scalar amplitudes, related
to the corresponding partial vertices as

ψS,D(k0, |k|) =
GS,D(k0, |k|)(

MD

2
− E

)2

− k2
0

.

In eqs. (A.1-A.2) the normalization factor is N =
1√
8π

1
2E(E + m)

.

Appendix B. 1S0 state

Different representations of the BS amplitude 1S0 in the
continuum have been studied in details in ref. [35], where
the reader may found the most general expressions for the
covariant amplitudes bi, eq. (19), in terms of the partial
amplitudes φj in the center of mass of the pp pair. Since
in the present paper we consider only the ++ component
of the φi, we are left with one invariant function b, which
is taken to be b4. Then the explicit expressions for the
kinematical coefficients C1, C2, C3 in eq. (20) can be cast
in the form

C1 = (pp · k)A1 − (E + m) (p0
p + m)A2 − (q · pp)

× (E + m)A3 − (q · k) (p0
p + m)A4,

C2 =
3√

2(E − m)
[ (E − m)A1 − (p0

p + m)A2

−((2k − q) · q)A3],
C3 = A1 − (E + m)A3 + (p0

p + m)A4,

where

A1 = K [P ′
0 (p0

p + 2m) + (q · pp)] − 1, (B.1)

A2 = K [P ′
0 (p0

p − 2m) + (q · pp)] − 1, (B.2)

A3 = −K (2m − p0
1 + p0

p), (B.3)

A4 = −K (2m + p0
1 − p0

p), (B.4)

with the invariant coefficient K =
1

e
√

sf
(see ref. [35]).

The 4-vectors p1 and pp are defined by

p1 =
1
2
P ′ + k − 1

2
q = (p0

1,pp),

pp = (p0
p,pp), p0

p =
√

m2 + p2
p, pp = k − q.

Observe, that pp represents an on-mass shell vector. Note
also, that in the relativistic impulse approximation, since
p0
1 = p0

p, eqs. (B.1-B.4) are substantially simplified.

Appendix C. Relativistic spin transformations

By definition, a state with given momentum p and helicity
λ in a frame of reference O is that obtained by a Lorenz
transformation of a state with given spin projection sz
from the rest system Orest to O, i.e.

|p;λ〉 ≡ |
0
p, s, sz〉O, (C.1)

where
0
p= (m, 0, 0, 0). As usual, a Lorenz transformation

h[p] is presented by a sequence of two operations: a boost
along the z-axis, lz(v), where v is the speed of the state
in O, and a rotation from the z-direction to the direction
of p, i.e. O = r−1(φ, θ, 0)l−1

z (v)Orest.
Let us suppose now that one has a state |p;λ〉 given

in the frame O and one wishes to know how it reads in
another frame O′ obtained by a Lorenz transformation l
on O

|p;λ〉O′ = U(l−1)|p;λ〉. (C.2)

From the definition of the helicity states one has

U(l−1)|p;λ〉 = U(l−1)U(h[(p)])|
0
p;λ〉, (C.3)

where h[p] is the corresponding Lorenz transforma-

tion
0
p→ p. Then multiplying eq. (C.3) by unity,

U(h[(p′)])U−1[h[(p′)]=1, where h[p′] is the helicity trans-

formation that defines a state |p′;λ〉 = U(h[(p′])|
0
p, λ〉

with p′ being the same vector as obtained by transform-
ing p from O to O′, one obtains

U(l−1)|p;λ〉 = U(h[(p′])R|
0
p, λ〉, (C.4)

where R = U−1[h[(p′)]U(l−1)U [h(p)] is the sequence of

transformations
0
p→ p → p′ →

0
p, i.e. nothing but a rota-

tion. Then,

|p, λ〉O′ = D
(s)
λλ′(ω)|p′, λ′〉, (C.5)

where ω is a set of Euler angles describing the rotation. In
the case when the Lorenz transformation is a simple boost
along the z-direction with the speed β, then ω is just an
angle, describing a rotation about the Y -axis,

cosω = cos θ′ cos θ + γ sin θ′ sin θ, (C.6)
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with γ = 1/
√

1 − β2, and θ, θ′ are the polar angles of p in
the systems O and O′, respectively. This is known as Wick
helicity rotation, contrary to Wigner’s canonical spin rota-
tion. In our case, the relevant z-axis is the one along the di-
rection of (k+p). Then, obtaining the helicity amplitudes
in the laboratory frame we need an additional rotation to
change from the helicity basis to the spin projections.
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